In vitro differentiation of endometrial regenerative cells into smooth muscle cells: A potential approach for the management of pelvic organ prolapse
نویسندگان
چکیده
Pelvic organ prolapse (POP), is a common condition in parous women. Synthetic mesh was once considered to be the standard of care; however, the use of synthetic mesh is limited by severe complications, thus creating a need for novel approaches. The application of cell-based therapy with stem cells may be an ideal alternative, and specifically for vaginal prolapse. Abnormalities in vaginal smooth muscle (SM) play a role in the pathogenesis of POP, indicating that smooth muscle cells (SMCs) may be a potential therapeutic target. Endometrial regenerative cells (ERCs) are an easily accessible, readily available source of adult stem cells. In the present study, ERCs were obtained from human menstrual blood, and phase contrast microscopy and flow cytometry were performed to characterize the morphology and phenotype of the ERCs. SMC differentiation was induced by a transforming growth factor β1-based medium, and the induction conditions were optimized. We defined the SMC characteristics of the induced cells with regard to morphology and marker expression using transmission electron microscopy, western blot analysis, immunocytofluorescence and RT-PCR. Examining the expression of the components of the Smad pathway and phosphorylated Smad2 and Smad3 by western blot analysis, RT-PCR and quantitative PCR demonstrated that the 'TGFBR2/ALK5/Smad2 and Smad3' pathway is involved, and both Smad2 and Smad3 participated in SMC differentiation. Taken together, these findings indicate that ERCs may be a promising cell source for cellular therapy aimed at modulating SM function in the vagina wall and pelvic floor in order to treat POP.
منابع مشابه
Regenerative Potential of Endometrial Stem Cells: A Mini Review
Recent findings in stem cell biology have opened a new window in regenerative medicine. The endometrium possesses mesenchymal stem cells (MSCs) called endometrial stem cells (EnSCs) having specific regenerative properties linked to adult stem cells. They contribute in tissue remodeling and engineering and were shown to have immuno-modulating effects. Many clinical trials were undertaken to asce...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملReview Paper: Application of Hair Follicle Bulge Stem Cells in Wound Healing
Despite the significant advances in regenerative medicine, wound healing has remained a challenging clinical problem. Skin is the largest human organ with many vital functions; therefore, any damage to its normal structure should be treated as soon as possible. Easy access to skin stem cells has created a lot of excitement in therapeutic applications. “Cell therapy” is considered a novel method...
متن کاملفاکتورهای نسخهبرداری کلیدی موثر در تمایز سلولهای بنیادی مزانشیمی: مقاله مروری
Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are ...
متن کامل